有机微纳晶体和电子受体在有机光电器件中的研究

编辑:指甲网互动百科 时间:2020-01-24 23:23:15
编辑 锁定
《有机微纳晶体和电子受体在有机光电器件中的研究》外文名《The study of organic micro nano crystal and electron acceptor in organic optoelectronic devices》。属性为文章。属有机光电器件领域。
中文名
有机微纳晶体和电子受体在有机光电器件中的研究
外文名
The study of organic micro nano crystal and electron acceptor in organic optoelectronic devices.
属    性
文章
领    域
有机光电器件

有机微纳晶体和电子受体在有机光电器件中的研究中文摘要

编辑
本论文立足于有机半导体材料中精细构效关系的研究,着重提出了分子结构设计与合成、分子聚集体行为调控以及器件加工工艺优化、器件物理过程分析三步并重的研究思路。遵循此思路,发展了具有高迁移率的有机场效应晶体管材料和一系列具有高能量转化效率的体异质结太阳能电池的电子受体材料。
  在第一部分工作中,我们设计并合成了一类以苯并二噻吩为骨架的可溶性稠环分子,通过溶液加工方式将其加工为一维微纳晶体,构建新型有机微纳晶体电子学器件,获得了空穴迁移率高达2.1㎝² V⁻¹ s⁻¹的一维有机微纳米场效应晶体管和光电放大率(Gain)高达1300微纳米柔性紫外光检测器。[1]  在优化器件加工工艺过程中,我们还发展了一种廉价高效加工不对称电极接触的一维微纳米器件的工艺,并利用此工艺制备了输出不对称的晶体管器件和三态输出的光控二极管器件。我们还系统研究了影响制备高迁移率晶体管器件和高效率光导器件的关键工艺变量,通过优化工艺步骤来调控有机半导体分子聚集体行为,详细探究了具有推广价值的有机电子学中材料结构与器件性能之间的构效关系。
  在第二部分工作中,我们发展了一大类基于多取代苊并异吲哚二酮的分子。通过调整取代方式,制备了分子性质被精确控制的材料库。我们利用该类材料代替富勒烯类衍生物作为电子受体与P3HT共混加工体异质结太阳能电池。通过材料筛选以及器件工艺优化,我们获得了7个能量转化效率超过2%的小分子电子受体材料,大大拓宽了非富勒烯衍生物小分子受体的材料库。此外,我们还首次将倒装电池结构引入到小分子受体材料的器件研究中,获得了高达2.89%的能量转化率,创下了以P3HT为给体时非富勒烯衍生物小分子受体最高的能量转化率记录。我们还利用该加工工艺制备了能量转化率高达2.17%的全高分子太阳能电池。通过变量控制的方法对器件加工和性能测试中的各个变量进行了系统的控制和研究,我们找到了影响最终器件性能的关键变量,并通过化学结构修饰和工艺流程改进等手段调控关键变量进而优化器件性能。
  总之,在研究一维有机微纳米晶体在有机半导体器件中的应用和开发非富勒烯电子受体材料过程中,我们始终贯穿分子结构改变、分子聚集体行为调控和最终器件物理过程讨论这条分为三段的研究主线,通过变量控制的思想寻找影响器件性能的关键变量,并通过化学修饰、工艺流程优化和器件物理分析等手段对关键变量进行强化,归纳精细的构效关系,以此为基础更为理性高效率地发展更优更好的有机半导体材料。

有机微纳晶体和电子受体在有机光电器件中的研究外文摘要

编辑
The thesis focuses on the investigation of the structure-property relationship of organic semiconductors for optoelectronics. Molecular design and synthesis, modification of mesoscopic molecular assembly, and devices physics analysis were proposed to be three components of the sophisticated model to develop organic semiconductors with high performance. We developed an organic one-dimensional sub-micrometer single crystalline material for high performance transistors and photodetectors; and a series of novel non-fullerene organic electron acceptors for high performance bulk heterojunction (BHJ) photovoltaic cells.
First, a soluble benzodithiophene derivative was facilely developed to form one-dimensional (1D) sub-micrometer single crystal structures by solution process. A high performance transistor with hole mobility up to 2.1㎝² V⁻¹ s⁻¹ and a high sensitive photodetector with gain up to 1300 were fabricated using such 1D structures as active materials. Through the optimization of the devices fabrication process, a new fabrication process with asymmetric electrodes contact was developed for an asymmetric transistor and a tri-state photodiode. The crucial variables for high performance devices based on 1D crystal structures were systematically investigated in detail.
  Second, a series of acenaphtho[1,2-f]isoindole-8,10(9H)-dione derivatives were developed as the electron acceptors in the BHJ solar cells to replace fullerene derivatives. Through materials selection and process optimization, seven compounds with power conversion efficiency (PCE) up to 2% were obtained. Inverted solar cells with PCE as high as 2.89% were fabricated based on the o-CH₃Ph-CN and P3HT blend films. To the best of our knowledge, it is the highest performance for BHJ solar cell based on non-fiillerene acceptors. Moreover, we also fabricated an all-polymer solar cell with PCE up to 2.17% via the same fabrication process. All the variables during molecular modification and devices fabrication were carefully controlled. The crucial variables were found, and were tuned to enhance the devices performance.
  In conclusion, we developed a novel organic transistor material and electron acceptors via our tri-components research model. A sophisticated structure-property relationship was proposed and tested in both systems. Crucial variables were found via such control methodology, and were tuned by both chemical and physical modification. High performance materials and optimized fabrication process were achieved.
  Keywords: One-Dimensional Organic Nanocrystal, Non-Fullerene Electron Acceptors, Organic Field Effect Transistors, Photodetector, Inverted Solar Cell.
参考资料
词条标签:
出版物 书籍